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An approximate analytical method is proposed for solving the convective heat-trans- 
fer equations; the method is based on series expansion in terms of the eigenfunc- 
tions of the heat-conduction equation. 

Methods of solving the problem of steady heat transfer in a laminar flow are basically 
numerical, and may be conventionally divided into two basic types:~finding the eigenvalues 
and eigenfunctions by series expansion with respect to the transverse coordinate [i, 2] and 
using various versions of the finite-difference method [1-5]. 

The analytical method proposed in the present work for calculating the temperature field 
and heat flux with arbitrary values of the Peclet number Pe may be used for both pellicular 
flows and flows in channels. 

It is assumed below that the boundary conditions and velocity of the fluid v = Vx(Y) do 
not changealong the flow. 

With constant fluid properties, the given problem may be described by the following equa- 
tion 

07 
v . . . . . .  aAT 

ax 

andthe boundary conditions 

> o:  i-b-f j, (i 1, 2), (1) 

x = O :  T = T o ( y ) ,  

which give conditions of the first, second, or third kind with definite values of the coeffi- 

cients ~i '  ~i '  ~i" 
Homogeneous boundary conditions in terms of y are more convenient than Eq. (i) for solu- 

tion. They may be derived by introducing the auxiliary function Tx(x, y) satisfying the equa- 
tion for T(x, y) and the boundary conditions in Eq. (i). The function T,(x, y) may be regard- 
ed as the fluid temperature at a large distance from the input to the heat-transfer region. 
It is simple to obtain an expression for T~(x, y) as a rule, and therefore it is assumed to 
be known. Subtracting Tx from T, a new function satisfying boundary conditions homogeneous 
in y is obtained . . . .  

Converting to dimenslonless quantities -- 8 ffi (T -- T,)/T*, 0 = vS/Q, x = x/h, 9 = y/h, 
8. = 8./h, Pe = Oh/Sa, ds = ds/S -- and omitting the tildes for the sake of convenience, the 
result obtalned is 

a~ C2) 
P e v  = A63, 

0x 

The essence of this method is to expand the desired solution of Eq. (2) in series in 
eigenfunctions of the heat-conduction problem~ with the same boundary conditions, and then 
to determine the coefficients of these functions and also the spectrum of the problem. 
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As Pe + .0, the left-hand side of Eq. (2) may be nemlected, and the equation reduces to 
the heat-conduction equation, the solution of which 8(~ y) is regarded as known [6]. In 
general fOrm, 8(~ y) is determined as the sum of the series 

where ~n 

oc 

(4 ̀0' (x, y) := ~ :  C,,q', (t/) exp (--vnx), (3) 
t'2 ~ 1 

and ~n(y) are the eigenvalues and eigenfunctions of the boundary problem 

dg )/y=ui 

The set of eigenfunctions CPn has the properties of completeness and orthogonality [7] 

and, with the corresponding normalization, it follows that ,[ ePnrpmds = ~,..  , where [ds is 

the integral over the cross section of the flow a. 

From the condition 8(~ = So(y) and the finiteness of 8(~ y) as x -> =, 

t h a t  Cn : [ Oo%ds, "%>0  . 
fi 

The solution of Eq. 

it follows 

(2) with arbitrary Pe may also be expanded in series in terms of ~n 

oo 

O (x, y) = X [~, (x) q),~ (tj), [,~ (x) = .[ @ (x, y) % (y) ds. (4) 
n = l  

Substituting Eq. (4) into Eq. 
for determining f (x) is obtained 

n 

(2), after simple transformations, a system of equations 

d2[" v~[~ = Pe ~ d[,, I v%%,ds. 
dx2 m~l~ a n . , - - , d x  anm::= i~' 

The boundary conditions fn(0) = Cn, fn(=) < ~ are added to this system. 

The system obtained is a system of linear homogeneous differential equations with con- 
stant coefficients. Assuming that there are no multiple roots of the characteristic equation, 
its solution may be written in series form 

[,~ (x) = ~ g,,#xp (--klx). 
l =  1 

After substitution into the corresponding equation and boundary conditions, a system of al- 
gebraic equations for determining the coefficients gnz and the spectrum kz is obtained 

g~z ( ~ - -  k~ ) = Pe kz "~ a.~g.a, (5) 
m = l  

~ g ~ z  = C~, k~>O. z=l (6) 

Thus, the problem in Eq. (2) reduces to a system of algebraic equations. Since the num- 
ber of equations and unknowns in Eqs. (5) and (6) is infinite and the system is nonlinear, it 
is impossible to obtain its accurate solution in general form. 

In the particular case when v = const = I (core flow), the accurate solution of Eqs. (5) 
and (6) takes the form 

1 
g.t = C,,6.z, k.  = ~ (VPeZ+4v]--pe) .  
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The corresponding temperature profile is determined by theexpression 

@ ~ C,,%. (9) exp (--k,.x), (7) 
n =  1 

i.e., differs from the solution of the heat-conduction problem in Eq. (3) only by the spectrum 

{kn}. 

To obtain an approximate solution with arbitrary v(y), several properties of the matrix 
anm are considered. The flow is assumed below to be unidirectional: v(y) ~ 0 when 9EQ) �9 

S I I Then it follows from ~, s =. vds= 1 that a~m=, v~nds ~ 1 . 

Since, when n > i, ~n(y) is a sign-variable function and the number of its zeros in R is 
proportional to n, the function ~nm = V~n~m is also sign-variable when n ~ m. The number of 
regions in which ~nm > 0 is approximately the same as the number of regions where @nm < 0. It 
is natural to assume that anm I << i, i.e., the nondiagonal matrix elements anm are much less 
than the diagonal elements, while lanm ] decreases with increase in n -- m}, 

It follows from the properties of anm and from Eqs. (5) and (6) that, in each column and 
row of the matrix gram' the diagonal element is the greatest (in modulus). 

Taking account of the elements adjacent to the diagonal elements anm and gum 

gnm= gnn6,,m + g,,n-16n-1m + g,,~+lSn+lm -'~ g,,n-18,,m-1 -{- gn+xn~nm+l, 
(B) 

a.~ = a..8.m + a.._~ (8,,_1~ + 8,,~_1) + a..+~ (8.+m + 8..,+0, 
the result obtained after substituting Eq. (8) into Eqs. (5) and (6) is 

gn+ln : Pe kng..F.a~, (9) 

g . -  I,~ = - - P e  k.g..F._lan., (i0) 
g.,, = C. + Pe (Cn+lkn+lan+ln+lFn -- C.-lk.-aan-1.-1F.-O. (11) 

1 2 2 4 v ]  - -  P e  a ~ . ) ,  
. k. -- 2(1 -t- PeZD.) (]/pez (a . .+4~ .D. )  + (12) 

F .  = 2 a .+l .  " ~2 , D.  = a.. (a..+iF.-- a.._xF._,). 
OnnYn+ 1 - -  G n + l n + l  n 

Hence an expression for the temperature profile is obtained 

oo 

O (x, y) = ~ g.,, (q~,, + Pe k.a.. lFn~n+l -- F,~_~%,_d) exp (--knx). 
n = l  

(13) 

As Pe -> ~, as is known, a new arbitrary coordinate x, = x/Pc may be introduced. In this 
case, Eq. (2) transforms to the heat-transfer equation in the absence of heat conduction in 
the direction of the flow 

00 
= LO, 

ax~ 

t h e  s o l u t i o n  of  which i s  o b t a i n e d  from Eqs.  ( 9 ) - ( 1 3 )  

0 (xl, y) = ~ ~z (9) exp (--~,lxO. 
I = 1  

Here I~ and ~z(y) are the eigenvalues and eigenfunctions of the StuLm Liouville problem 

Y=!I f 

In the given approximation, the expressions for %Z and OZ take the form 

)~ -- lira Pe kz = - - L 1  (]/a~l q-4,~ DI - -  an), 
v~oo~ 2D~ 
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*t = g t z ( r 1 6 2 1 6 3  
Returning to Eq. (2) with arbitrary Pc, it may be shown that, taking account of the ma- 

trix elements farther from the diagonal elements anm and gnm' the solution of Eq. (2) is ob- 
tained with any specified accuracy 

n = l + M  

0 = exp ( - - k t x )  ~ g,a%~ (Y). 
l =  1 n = l - - M  

The relative error in this case is no more than [aXM+11Pekx/v~. Since it is practically 
impossible to calculate the temperature O(x, y) in the form of an infinite series, there aris- 
es the question of how many terms must be taken into account in order to achieve the required 

It may be shown that, if the sequence of coefficients ~ICz] , which is determined accuracy. 
by the temperature Oo(y), is monotonically convergent (which corresponds to a sufficiently 
broad class of problems), the relative error associated with taking account only of the first 
N terms of the series is of order [CN+~/C,[exp((--kN+ * -- k,)x). 

The results of calculating the maximum relative error for flow through a plane channel 
with a constant wall temperature and To = const are shown in Table i. 

It must also be taken into account that, for sufficiently large Z (vl >> Pe), convective 
heat transfer may be neglected. Then 

gn/Ct :== kt/,v l =:1 .4-0 (', P~ze ) ,  

and hence the eigenvalues and eigenfunctions of Eq. (2) may be regarded as coinciding with 
the corresponding eigenvalues and eigenfunctions of the heat-conduction problem, which allows 
the volume of computations to be significantly reduced. 

Knowing the temperature profile~ the Nusselt number Nu may be found; it is determined 
from the mean-flow-rate temperature O 

1 
Nu~ ( x ) = - -  _ 

6) 

g,,., ( a%, I 
" 06) ) n,l ~ dR 'v=v~ 

{-~9 %" - exp (--k,x) Y=Y i =  --- ~ gnlq~ n 
I1,l 

= f: cp,,=-.t" d' fi 

The limiting Nusselt number Nui~ = lim Nui(x) is determined by the coefficients of exp (--k,x) 
X-+~ 

Nui= = - -  " 

n 

To compare this new method with the well-known version, the results of calculating 
Nu (Pe) for a case that has been well investigated are given: for flow through a plane chan- 
nel with a constant wall temperature. 

Curves of Nu as a function of Pe are~ in Fig. i: i) taking account only of the 
diagonal matrix e~ements anm and gnm; 2) taking account also of those closest to the diagonal; 
3) numerical calculation [i7, for comparison. As is evident from Fig. i, the difference be- 
tween curves 2 and 3 is slight, and hence taking account of the matrix elements adjacent to 
the diagonal elements anm ,gnm allows a solution sufficiently close to the accurate result 
to be obtained (relative error less than 2%). 

1191 



In conclusion, as an example of the use of the given method, consider steady heat trans- 
fer between a liquid layer running down an inclined plane in laminar conditions and a gas flow 
around it. The tangential stress at the free surface is determined by the dimensionless pa- 
rameter T. 

The liquid velocity is 

v ( y ) =  h ( l + ~ )  ~-b ' l  h 2h 2 " 

The boundary conditions for the temperature are as follows 

The eigenfunctions ~n 
the form 

7"1.=o--To, rl~=,=r,, 0-~-yT I =0. 
' y=0 

and eigenvalues v of the heat-conduction problem in this case take 
n 

% = ] ,"2cosy, ,  Y 2 n - -  1 2[. 

The coefficients required to calculate the dimensionless temperature e = (T -- T~)/(To -- 
T~9 and the Nusse!t number are determined by the expressions 

( 2 : . 2 ( - - 1 )  n+* ; % - - - -  (3-1-2v) 1 - -  
.C,, = (2n - -  1) 2[ - 1 + 

cn)  ] 
V'2- -- -~ ( l - c ~ )  ; 

d %  f 1 3 + 4_____j_~ 
I ( - - 1 ) " ;  an. : 1 - -  o 

n~m:n@m even, anm = 

n --}- m odd, 

i [ a 3+4 . ]. 
!(n-.;)= (n+--/LU-02] ' 

1 . . [  3+4"~ 3 ] 
a,,n~=-- aa (1 -~ "0 (n--m)*" (n  -l--m--l) z " 

In Eq. (8), determining gnm and k from Eqs. (9)-(12), the desired functions O(x, y) and 
Nu(x) are obtained n 

o~ 

(-) = n=2-~ (gnn(~n "~- gn-ln(Pn-l "~- ~n4"In(Pn+l) exp (--kn +) 

2[2 
N u = .  • 

4 
ce 

.~ (-- ' [(2n-- 1) g,,,,--(2n--3) g,~_~,~--(2n-+,-1) g.+~.l exp --k~ 
,'7~1 X 

' 1 

C,, (2.-- n :  l 

The explicit form of gnm(Pe, T) and k (Pe, z) is not given here for reasons of space. 
n 

TABLE I. Error for Various M and N when x = 
0 and Pe + =, % 

N 
M 

5 I I0 25 ] 50 

21 16 
12 7 
10 5 

13 1 12 4 3 
2 i 
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Fig. i. Dependence of Nu on Pe 
for flow over a plane cha~nel with 
a constant wall temperature. 

~"I NUo~ 3 

o,e - a z 3,,2 

~ , L , 3 , 0 ~  , i , m , 
0 8 18 Pe # 8 Pe 

Fig. 2. Dependence of k~ and Nu~ on Pe for  f low over an i n -  
cl ined plane. 1) T =--0.75; 2) z = 0; 3) T-~ ~. 

Curves of k,(Pe, T) and Nu~(Pe, T) are shown in Fig. 2. As is evident from Fig. 2, k~ 
and Nu~ increase with increase in T at constant Pe, and hence the heat transfer between the 
film and the surrounding gas flow is intensified. The minimum value of T is taken to be-~.75, 
since when T < -0.75 return flow is formed close to the free surface, i.e., the condition of 
unidirectionality is violated. The case when T + ~ corresponds to horizontal flow of the li- 
quid film arising on account of entrainment in the gas flow. 

NOTATION 

Pe, Peclet number; v, flow velocity, m/sec; T, fluid temperature, K: x, y, coordinates 
along and transverse to flow, m; a, thermal diffusivity, m2/sec; A, Laplacian, m-2; y=, co- 
ordinates of flow boundary, m; To, temperature at input to heat-transfer zone, K; e, ~imen- 
sionless temperature; T*, temperature used in forming dimensionless parameters, K; 0, fluid 
flow rate, m3/sec; S, cross-sectional area of flow, m2; h, characteristic length transverse 
to flow, m; ~ , Kronecker delta; Nu, Nusselt number; Q,, fluid flow rate per unit width of nm 
film, m2/sec. Indices: i = I, 2, number of flow boundary. 
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